Math for Management, Winter 2023

List 4

Sequences, limits of sequences and functions

- 67. (a) If $a_n = (n+2)^3$, give the value of a_3 .
 - (b) For the sequence $b_n = n^{-n}$, what are the values b_1 , b_2 , and b_3 ?
 - (c) If $c_n = (1 + \frac{1}{n})^n$, what are the values c_1 , c_2 , and c_3 ? Give exact formulas (by hand) and decimal answers (using a calculator).
- 68. Consider the sequence

$$s_1 = 2$$

$$s_2 = 22$$

$$s_3 = 222$$

$$s_4 = 2222$$

$$s_n = \underbrace{22...2}_{n \text{ digits}}$$

- (a) Calculate $(10s_1 + 2) s_1$, then $(10s_2 + 2) s_2$, then $(10s_3 + 2) s_3$.
- (b) Find a formula for $(10s_n + 2) s_n$ in terms of n only.
- (c) Find a formula for s_n .

A sequence a_n is monotonically increasing if $a_{n+1} > a_n$ for all n. A sequence a_n is monotonically decreasing if $a_{n+1} < a_n$ for all n.

A sequence is **monotonic** if it is either monotonically increasing or monotonically decreasing.

69. Label each of the following sequences as "monotonically increasing" or "monotonically decreasing" or "neither". Assume $n \ge 1$.

(a)
$$n^2$$
 (b) $\frac{2}{n^2}$ (c) $(-5)^n$ (d) $(-5)^{2n}$ (e) $\frac{n^3}{n^4+20}$

A sequence $(a_1, a_2, ...)$ is **arithmetic** if $a_{n+1} - a_n$ is constant. A sequence $(a_1, a_2, ...)$ is **geometric** if a_{n+1}/a_n is constant.

- 70. Find the general formula for the arithmetic sequence that satisfies $a_3 = 3$ and $a_{12} = 21$. Also calculate $S_{20} = a_1 + a_2 + \cdots + a_{20}$.
- 71. Find the general formula for the geometric sequence that satisfies $a_2 = 18$ and $a_4 = 2$. Also calculate S_5 .
- 72. Find the sum of all three-digit numbers that are divisible by 3.

We say that **limit** of a sequence a_n is the number L and write " $\lim_{n\to\infty} a_n = L$ " if for any $\varepsilon > 0$ there exists an N such that $L - \varepsilon < a_n < L + \varepsilon$ for all n > N.

We write " $\lim_{n \to \infty} a_n = \infty$ " if for any M > 0 there exist an N such that $a_n > M$ for all n > N. Similarly, " $\lim_{n \to \infty} a_n = -\infty$ " if for any $M > 0, \dots a_n < -M$ for all n > N. 73. (a) For which positive integers *n* is $4 - \frac{1}{100} < \frac{8n}{2n+9} < 4 + \frac{1}{100}$? (b) For which positive integers n is $\frac{8n}{2n+9} = 4$? (c) Is it true that $\lim_{n \to \infty} \frac{8n}{2n+9} = 4$? 74. Calculate $\lim_{n \to \infty} \frac{3n^2 + n + \sqrt{n}}{5n^2}$. 75. Find the following limits if they exist. (a) $\lim_{n \to \infty} \frac{n}{n+1}$ (i) $\lim_{n \to \infty} \frac{n^2}{n+13}$ (b) $\lim_{n \to \infty} (-1)^n$ (j) $\lim_{n \to \infty} \frac{8}{\sqrt{n}}$ (c) $\lim_{n \to \infty} \frac{3n}{9n+7}$ (k) $\lim_{n \to \infty} -2^n$ $\stackrel{\text{tr}}{\approx}$ (d) lim sin(3n) (e) $\lim_{n \to \infty} \sin(\pi n)$ (l) $\lim_{n \to \infty} (-2)^n$ (f) $\lim_{n \to \infty} \frac{(-1)^{n+1}}{n}$ (m) $\lim_{n \to \infty} 2^{-n}$ (g) $\lim_{n \to \infty} \frac{n+13}{n^2}$ (n) $\lim_{n \to \infty} 2^{1/n}$ (h) $\lim_{n \to \infty} \frac{(n+5)(n-2)}{n^2 - 6n + 7}$ (o) $\lim_{n \to \infty} \left((9\sqrt{n} + \frac{1}{\sqrt{n}})^2 - 81n \right).$

- $\stackrel{\sim}{\approx}$ 76. Find $\lim_{n \to \infty} n \cdot (2^{1/n} 1)$. The $\stackrel{\sim}{\approx}$ means that this task is harder than what is normally expected in this course.
 - 77. (a) Simplify the formula $\frac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\sqrt{n}+\sqrt{n-1}}.$ (b) Find $\lim_{n\to\infty}\sqrt{n}-\sqrt{n-1}.$

78. Use the Squeeze Theorem with $\frac{-1}{n} \leq \frac{\cos(n)}{n} \leq \frac{1}{n}$ to find $\lim_{n \to \infty} \frac{\cos(n)}{n}$. \$\sim 79. Use the fact that $\left(1 - \frac{1}{\sqrt{n}}\right)^n \leq \frac{1}{n}$ to find $\lim_{n \to \infty} (1/n)^{1/n}$. 80. (a) The *definition* of the number "0.385" is

$$3 \cdot 10^{-1} + 8 \cdot 10^{-2} + 5 \cdot 10^{-2}$$
.

Write this number as a fraction (or an integer, if possible).

(b) The *definition* of the number "0.2222..." is the *limit* of the sequence

$$S_{1} = 0.2$$

$$S_{2} = 0.22$$

$$S_{3} = 0.222$$

$$S_{4} = 0.2222$$

$$S_{n} = 0.2222$$

$$n \text{ digits}$$

Write this number as a fraction (or an integer, if possible). Hint: See Task 68(c).

(c) The *definition* of the number "0.9999..." is the *limit* of the sequence

$$S_n = 0.\underbrace{99...9}_{n \text{ digits}}.$$

Write this number as a fraction (or an integer, if possible).

- 81. Convert 1.8888... and 0.313131... into fractions.
- 82. Use the facts

$$0 < \ln(n)$$
 for all $n \in \mathbb{N}$ with $n \ge 2$

and

$$\ln(n) < \sqrt{n} \qquad \text{for all } n \in \mathbb{N}$$
$$\ln(n)$$

to determine the value of $\lim_{n\to\infty} \frac{\operatorname{III}(n)}{n}$.

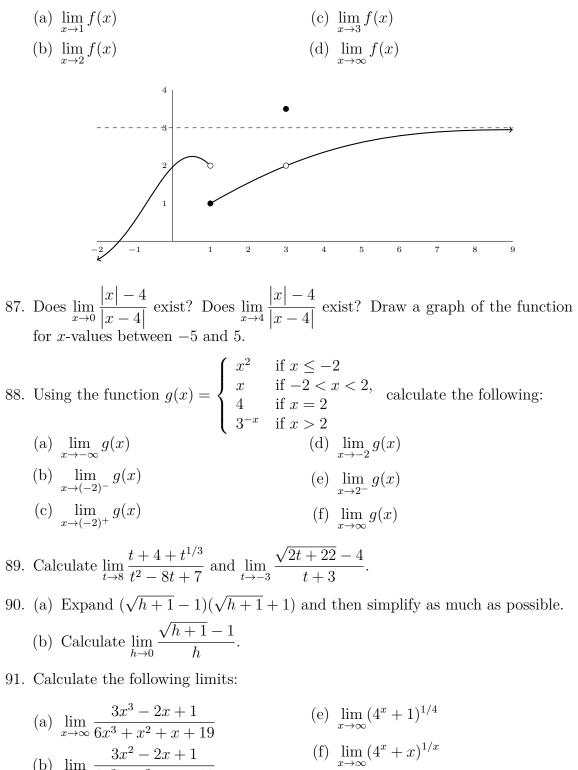
83. Use the Squeeze Theorem to find
$$\lim_{n\to\infty} (5^n + 3^n)^{1/n}$$
 and $\lim_{n\to\infty} \frac{n^3}{3^n}$.

84. Find the limits of these sequences and functions:

(a)
$$\lim_{n \to \infty} \frac{2^n + 4^{n+1/2}}{4^n}$$
 (c) $\lim_{n \to \infty} \frac{n^3 + n^{-3}}{n^2 + n^{-9}}$ (e) $\lim_{n \to \infty} \sin(\pi n)$
(b) $\lim_{x \to \infty} \frac{2^x + 4^{x+1/2}}{4^x}$ (d) $\lim_{x \to \infty} \frac{x^3 + x^{-3}}{x^2 + x^{-9}}$ (f) $\lim_{x \to \infty} \sin(\pi x)$

85. Calculate $\lim_{x \to \infty} 6^x$ and $\lim_{x \to -\infty} 6^x$.

86. For the function whose graph is shown below, give the following limits (if they exist) to the nearest 0.5.



(b) $\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{6x^3 + x^2 + x + 19}$ (c) $\lim_{x \to 0} \left(\frac{8x - 1}{x - x^2} + \frac{1}{x}\right)$ (d) $\lim_{x \to \infty} \left(\sqrt{9x^2 + 5x} - 3x\right)$ (f) $\lim_{x \to \infty} (4^x + x)^{1/x}$ (g) $\lim_{x \to 7} \frac{x^2 - 4x - 21}{x^2 - 11x + 28}$ (h) $\lim_{x \to 0} \frac{x^3 - 8x^2 + 3x + 5}{x^9 - 6x^5 + x^4 - 12x + 1}$ 92. (a) Find the vertical asymptote(s) of

$$g(x) = \frac{1}{x^2 + x - 6}.$$

(b) Find the vertical asymptote(s) of

$$f(x) = \frac{x^2 - x - 2}{x^2 + x - 6}.$$

93. What horizontal asymptotes does the function

$$f(x) = \frac{x}{|x| + 5}$$

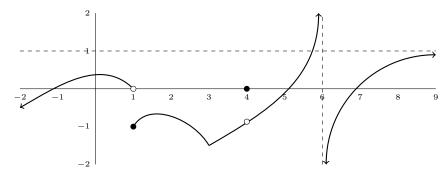
have? Hint: Calculate $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.

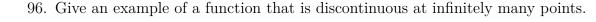
94. If f(x) is a function for which

$$24x - 41 \le f(x) \le 4x^2 - 5$$

for all x, what is $\lim_{x \to 3} f(x)$?

95. List all points where the function graphed below is discontinuous.





 ≈ 97 . Give an example of a function that is discontinuous at *every* point.

98. Find all value(s) of the parameter p for which

$$f(x) = \begin{cases} 3x + p & \text{if } x \le 8\\ 2x - 5 & \text{if } x > 8 \end{cases}$$

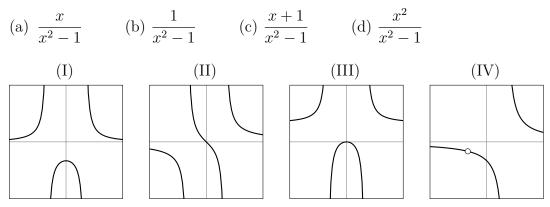
is continous.

99. Find all value(s) of the parameters a, b for which

$$f(x) = \begin{cases} x & \text{if } |x| \le 2\\ x^2 + ax + b & \text{if } |x| > 2 \end{cases}$$

is continous.

100. Match the functions with their graphs:



101. Without graphing, determine which one of the three equations below has a solution with $0 \le x \le 3$.

(A)
$$x^2 = 4^x$$
, (B) $x^3 = 5^x$, (C) $x^5 = 6^x$.

- 102. Let $f(x) = \frac{13x 77}{x 5}$.
 - (a) f(4) = 25 and f(11) = 11. Does the Intermediate Value Theorem guarantee that f(x) = 10 for some $x \in [4, 11]$?
 - (b) f(6) = 1 and f(11) = 11. Does the Intermediate Value Theorem guarantee that f(x) = 10 for some $x \in [6, 11]$?
 - (c) f(6) = 1 and f(8) = 9. Does the Intermediate Value Theorem guarantee that f(x) = 10 for some $x \in [6, 8]$?

103. (a) Find
$$\lim_{x \to 0} \frac{(5+x)^3 - 125}{x}$$
.

(b) Find
$$\lim_{h \to 0} \frac{(5+h)^3 - 125}{h}$$
.

(c) Find $\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$. Your answer will be a formula with x.