List 4

Sequences, limits of sequences and functions

67. (a) If $a_{n}=(n+2)^{3}$, give the value of a_{3}.
(b) For the sequence $b_{n}=n^{-n}$, what are the values b_{1}, b_{2}, and b_{3} ?
(c) If $c_{n}=\left(1+\frac{1}{n}\right)^{n}$, what are the values c_{1}, c_{2}, and c_{3} ? Give exact formulas (by hand) and decimal answers (using a calculator).
68. Consider the sequence

$$
\begin{aligned}
& s_{1}=2 \\
& s_{2}=22 \\
& s_{3}=222 \\
& s_{4}=2222 \\
& s_{n}=\underbrace{22 \ldots 2}_{n \text { digits }}
\end{aligned}
$$

(a) Calculate $\left(10 s_{1}+2\right)-s_{1}$, then $\left(10 s_{2}+2\right)-s_{2}$, then $\left(10 s_{3}+2\right)-s_{3}$.
(b) Find a formula for $\left(10 s_{n}+2\right)-s_{n}$ in terms of n only.
(c) Find a formula for s_{n}.

A sequence a_{n} is monotonically increasing if $a_{n+1}>a_{n}$ for all n.
A sequence a_{n} is monotonically decreasing if $a_{n+1}<a_{n}$ for all n.
A sequence is monotonic if it is either monotonically increasing or monotonically decreasing.
69. Label each of the following sequences as "monotonically increasing" or "monotonically decreasing" or "neither". Assume $n \geq 1$.
(a) n^{2}
(b) $\frac{2}{n^{2}}$
(c) $(-5)^{n}$
(d) $(-5)^{2 n}$
(e) $\frac{n^{3}}{n^{4}+20}$

A sequence $\left(a_{1}, a_{2}, \ldots\right)$ is arithmetic if $a_{n+1}-a_{n}$ is constant.
A sequence $\left(a_{1}, a_{2}, \ldots\right)$ is geometric if a_{n+1} / a_{n} is constant.
70. Find the general formula for the arithmetic sequence that satisfies $a_{3}=3$ and $a_{12}=21$. Also calculate $S_{20}=a_{1}+a_{2}+\cdots+a_{20}$.
71. Find the general formula for the geometric sequence that satisfies $a_{2}=18$ and $a_{4}=2$. Also calculate S_{5}.
72. Find the sum of all three-digit numbers that are divisible by 3 .

We say that limit of a sequence a_{n} is the number L and write

$$
" \lim _{n \rightarrow \infty} a_{n}=L "
$$

if for any $\varepsilon>0$ there exists an N such that

$$
L-\varepsilon<a_{n}<L+\varepsilon \quad \text { for all } n>N .
$$

We write " $\lim _{n \rightarrow \infty} a_{n}=\infty$ " if for any $M>0$ there exist an N such that $a_{n}>M \quad$ for all $n>N$.
Similarly, " $\lim _{n \rightarrow \infty} a_{n}=-\infty$ " if for any $M>0, \ldots a_{n}<-M$ for all $n>N$.
73. (a) For which positive integers n is $4-\frac{1}{100}<\frac{8 n}{2 n+9}<4+\frac{1}{100}$?
(b) For which positive integers n is $\frac{8 n}{2 n+9}=4$?
(c) Is it true that $\lim _{n \rightarrow \infty} \frac{8 n}{2 n+9}=4$?
74. Calculate $\lim _{n \rightarrow \infty} \frac{3 n^{2}+n+\sqrt{n}}{5 n^{2}}$.
75. Find the following limits if they exist.
(a) $\lim _{n \rightarrow \infty} \frac{n}{n+1}$
(i) $\lim _{n \rightarrow \infty} \frac{n^{2}}{n+13}$
(b) $\lim _{n \rightarrow \infty}(-1)^{n}$
(j) $\lim _{n \rightarrow \infty} \frac{8}{\sqrt{n}}$
(c) $\lim _{n \rightarrow \infty} \frac{3 n}{9 n+7}$
(k) $\lim _{n \rightarrow \infty}-2^{n}$
(d) $\lim _{n \rightarrow \infty} \sin (3 n)$
(1) $\lim _{n \rightarrow \infty}(-2)^{n}$
(f) $\lim _{n \rightarrow \infty} \frac{(-1)^{n+1}}{n}$
(m) $\lim _{n \rightarrow \infty} 2^{-n}$
(g) $\lim _{n \rightarrow \infty} \frac{n+13}{n^{2}}$
(n) $\lim _{n \rightarrow \infty} 2^{1 / n}$
(h) $\lim _{n \rightarrow \infty} \frac{(n+5)(n-2)}{n^{2}-6 n+7}$
(o) $\lim _{n \rightarrow \infty}\left(\left(9 \sqrt{n}+\frac{1}{\sqrt{n}}\right)^{2}-81 n\right)$.

W76. Find $\lim _{n \rightarrow \infty} n \cdot\left(2^{1 / n}-1\right)$. The means that this task is harder than what is normally expected in this course.
77. (a) Simplify the formula $\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n}+\sqrt{n-1}}$.
(b) Find $\lim _{n \rightarrow \infty} \sqrt{n}-\sqrt{n-1}$.
78. Use the Squeeze Theorem with $\frac{-1}{n} \leq \frac{\cos (n)}{n} \leq \frac{1}{n}$ to find $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}$.

2i3 (Use the fact that $\left(1-\frac{1}{\sqrt{n}}\right)^{n} \leq \frac{1}{n}$ to find $\lim _{n \rightarrow \infty}(1 / n)^{1 / n}$.
80. (a) The definition of the number " 0.385 " is

$$
3 \cdot 10^{-1}+8 \cdot 10^{-2}+5 \cdot 10^{-2} .
$$

Write this number as a fraction (or an integer, if possible).
(b) The definition of the number " $0.2222 \ldots$... is the limit of the sequence

$$
\begin{aligned}
& S_{1}=0.2 \\
& S_{2}=0.22 \\
& S_{3}=0.222 \\
& S_{4}=0.2222 \\
& S_{n}=0 . \underbrace{22 \ldots 2}_{n \text { digits }}
\end{aligned}
$$

Write this number as a fraction (or an integer, if possible).
Hint: See Task 68(c).
(c) The definition of the number "0.9999..." is the limit of the sequence

$$
S_{n}=0 . \underbrace{99 \ldots 9}_{n \text { digits }} .
$$

Write this number as a fraction (or an integer, if possible).
81. Convert $1.8888 \ldots$ and $0.313131 \ldots$ into fractions.
82. Use the facts

$$
0<\ln (n) \quad \text { for all } n \in \mathbb{N} \text { with } n \geq 2
$$

and

$$
\ln (n)<\sqrt{n} \quad \text { for all } n \in \mathbb{N}
$$

to determine the value of $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}$.
83. Use the Squeeze Theorem to find $\lim _{n \rightarrow \infty}\left(5^{n}+3^{n}\right)^{1 / n}$ and $\lim _{n \rightarrow \infty} \frac{n^{3}}{3^{n}}$.
84. Find the limits of these sequences and functions:
(a) $\lim _{n \rightarrow \infty} \frac{2^{n}+4^{n+1 / 2}}{4^{n}}$
(c) $\lim _{n \rightarrow \infty} \frac{n^{3}+n^{-3}}{n^{2}+n^{-9}}$
(e) $\lim _{n \rightarrow \infty} \sin (\pi n)$
(b) $\lim _{x \rightarrow \infty} \frac{2^{x}+4^{x+1 / 2}}{4^{x}}$
(d) $\lim _{x \rightarrow \infty} \frac{x^{3}+x^{-3}}{x^{2}+x^{-9}}$
(f) $\lim _{x \rightarrow \infty} \sin (\pi x)$
85. Calculate $\lim _{x \rightarrow \infty} 6^{x}$ and $\lim _{x \rightarrow-\infty} 6^{x}$.
86. For the function whose graph is shown below, give the following limits (if they exist) to the nearest 0.5 .
(a) $\lim _{x \rightarrow 1} f(x)$
(c) $\lim _{x \rightarrow 3} f(x)$
(b) $\lim _{x \rightarrow 2} f(x)$
(d) $\lim _{x \rightarrow \infty} f(x)$

87. Does $\lim _{x \rightarrow 0} \frac{|x|-4}{|x-4|}$ exist? Does $\lim _{x \rightarrow 4} \frac{|x|-4}{|x-4|}$ exist? Draw a graph of the function for x-values between -5 and 5 .
88. Using the function $g(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq-2 \\ x & \text { if }-2<x<2, \\ 4 & \text { if } x=2 \\ 3^{-x} & \text { if } x>2\end{array}\right.$ calculate the following:
(a) $\lim _{x \rightarrow-\infty} g(x)$
(d) $\lim _{x \rightarrow-2} g(x)$
(b) $\lim _{x \rightarrow(-2)^{-}} g(x)$
(e) $\lim _{x \rightarrow 2^{-}} g(x)$
(c) $\lim _{x \rightarrow(-2)^{+}} g(x)$
(f) $\lim _{x \rightarrow \infty} g(x)$
89. Calculate $\lim _{t \rightarrow 8} \frac{t+4+t^{1 / 3}}{t^{2}-8 t+7}$ and $\lim _{t \rightarrow-3} \frac{\sqrt{2 t+22}-4}{t+3}$.
90. (a) Expand $(\sqrt{h+1}-1)(\sqrt{h+1}+1)$ and then simplify as much as possible.
(b) Calculate $\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h}$.
91. Calculate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{3}-2 x+1}{6 x^{3}+x^{2}+x+19}$
(e) $\lim _{x \rightarrow \infty}\left(4^{x}+1\right)^{1 / 4}$
(b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{6 x^{3}+x^{2}+x+19}$
(f) $\lim _{x \rightarrow \infty}\left(4^{x}+x\right)^{1 / x}$
(c) $\lim _{x \rightarrow 0}\left(\frac{8 x-1}{x-x^{2}}+\frac{1}{x}\right)$
(g) $\lim _{x \rightarrow 7} \frac{x^{2}-4 x-21}{x^{2}-11 x+28}$
(d) $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+5 x}-3 x\right)$
(h) $\lim _{x \rightarrow 0} \frac{x^{3}-8 x^{2}+3 x+5}{x^{9}-6 x^{5}+x^{4}-12 x+1}$
92. (a) Find the vertical asymptote(s) of

$$
g(x)=\frac{1}{x^{2}+x-6} .
$$

(b) Find the vertical asymptote(s) of

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+x-6} .
$$

93. What horizontal asymptotes does the function

$$
f(x)=\frac{x}{|x|+5}
$$

have? Hint: Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
94. If $f(x)$ is a function for which

$$
24 x-41 \leq f(x) \leq 4 x^{2}-5
$$

for all x, what is $\lim _{x \rightarrow 3} f(x)$?
95. List all points where the function graphed below is discontinuous.

96. Give an example of a function that is discontinuous at infinitely many points.
is 97. Give an example of a function that is discontinuous at every point.
98. Find all value(s) of the parameter p for which

$$
f(x)= \begin{cases}3 x+p & \text { if } x \leq 8 \\ 2 x-5 & \text { if } x>8\end{cases}
$$

is continous.
99. Find all value(s) of the parameters a, b for which

$$
f(x)= \begin{cases}x & \text { if }|x| \leq 2 \\ x^{2}+a x+b & \text { if }|x|>2\end{cases}
$$

is continous.
100. Match the functions with their graphs:
(a) $\frac{x}{x^{2}-1}$
(b) $\frac{1}{x^{2}-1}$
(c) $\frac{x+1}{x^{2}-1}$
(d) $\frac{x^{2}}{x^{2}-1}$
(I)

(II)

(III)

(IV)

101. Without graphing, determine which one of the three equations below has a solution with $0 \leq x \leq 3$.
(A) $x^{2}=4^{x}$,
(B) $x^{3}=5^{x}$,
(C) $x^{5}=6^{x}$.
102. Let $f(x)=\frac{13 x-77}{x-5}$.
(a) $f(4)=25$ and $f(11)=11$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[4,11]$?
(b) $f(6)=1$ and $f(11)=11$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[6,11]$?
(c) $f(6)=1$ and $f(8)=9$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[6,8]$?
103. (a) Find $\lim _{x \rightarrow 0} \frac{(5+x)^{3}-125}{x}$.
(b) Find $\lim _{h \rightarrow 0} \frac{(5+h)^{3}-125}{h}$.
(c) Find $\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$. Your answer will be a formula with x.

